CROSS CORRELATIONS BETWEEN EUCLID AND CMB PART 2 : CMB LENSING

EUCLID ADVANCED SCHOOL 2022

LOUIS LEGRAND

SOME REVIEWS

- Lewis and Challinor 2006 <u>https://arxiv.org/abs/astro-ph/0601594</u>
- Hanson, Challinor and Lewis 2009 <u>https://arxiv.org/pdf/0911.0612.pdf</u>

ADVANCED EUCLID SCHOOL - LES HOUCHES - JUNE 2022

OUTLINE

What is the gravitational lensing of the CMB?

How do we measure it?

Cross correlations with galaxy surveys

Galaxy clusters and CMB lensing (optional) Next generation estimators of CMB lensing (optional)

ADVANCED EUCLID SCHOOL - LES HOUCHES - JUNE 2022

OUTLINE

What is the gravitational lensing of the CMB?

How do we measure it?

Cross correlations with galaxy surveys

Galaxy clusters and CMB lensing

Next generation estimators of CMB lensing

THE COSMIC MICROWAVE BACKGROUND

- Perfect black body at 2.725 K with very tiny O(10⁻⁵) anisotropies
- These perturbations are sourced by the initial power spectrum from inflation
- They have evolved under competing effects of gravity and pressure, while matter and photons were coupled

Planck collaboration 2013

POLARISATION OF THE CMB

- CMB photons are polarised by perturbations of the electron density at recombination
- We decompose polarisation into E and B modes (analogy with electro-magnetism)

- Primordial E modes:
- Sourced by scalar and tensor perturbations
- **Primordial B modes:**
- Sourced by tensor modes only = gravitational waves
- Primordial GW are relics of inflation
- But signal is dominated by secondary B modes from lensing

GRAVITATIONAL LENSING

- Photons are deflected by the mass along their trajectory
- Point source deflection angle is $\delta\theta = \frac{4MG}{c^2b}$

- CMB act as a extended source at z=1100
- CMB photons are lensed by the large scale structures created by gravitational evolution of matter

CMB LENSING

Lensing acts as a remapping of the primordial CMB fields

$$X^{\text{len}}(\boldsymbol{n}) = X^{\text{unl}}(\boldsymbol{n} + \boldsymbol{\alpha}(\boldsymbol{n}))$$

It creates statistical anisotropies and correlation between different scales

Blanchard and Schneider 1987

CMB LENSING

Lensing acts as a remapping of the primordial CMB fields

$$X^{\text{len}}(\boldsymbol{n}) = X^{\text{unl}}(\boldsymbol{n} + \boldsymbol{\alpha}(\boldsymbol{n}))$$

 It creates statistical anisotropies and correlation between different scales

Blanchard and Schneider 1987

LOCAL EFFECT ON THE POWER SPECTRUM

Magnified

Unlensed

Demagnified

SMOOTHING OF SPECTRUM

Averaged over the sky, lensing smooths out the power spectrum

• Λ CDM prediction is $A_{\rm L} = 1$

11

SMALL SCALES

- On small scales CMB spots are large (Silk damping)
- Appears like a gradient
- CMB lensing transfer power from large scales to smaller scales

Lewis and Challinor 2006

CMB LENSING EFFECT

Lensing creates B modes from E modes

Need to delens the B power spectrum to measure the primordial B modes created by the gravitational waves of inflation

BICEP/Keck Collaboration 2021

LENSING POTENTIAL

- Lensing is described by the deflection field, which can be described with a potential and a curl term $d = \overrightarrow{\nabla} \phi + \overrightarrow{\nabla} \times (\omega \hat{e}_z)$
- In practice the curl term is vanishing in the Born approximation (assuming lensing happens in one plane)
- > The lensing potential is the Weyl potential integrated along the line of sight

$$\phi(\boldsymbol{n}) = -2 \int_0^{\chi_*} d\chi \frac{\chi_* - \chi}{\chi_* \chi} \Psi\left(\chi \boldsymbol{n}; \eta_0 - \chi\right)$$

We also often use the convergence field

$$\kappa \equiv -\frac{1}{2} \overrightarrow{\nabla}$$

$$\cdot \boldsymbol{d} = -\frac{1}{2}\Delta\phi$$

CMB LENSING POWER SPECTRUM

Limber approximation

$$C_l^{\psi} \approx \frac{8\pi^2}{l^3} \int_0^{\chi_*} \chi d\chi \, \mathcal{P}_{\Psi}(l/\chi; \eta_0 - \chi) \left(\frac{\chi_* - \chi}{\chi_* \chi}\right)^2$$

Poisson equation gives

$$\mathcal{P}_{\Psi}(k;\eta) = \frac{9\Omega_m^2(\eta)H^4(\eta)}{4} \frac{\mathcal{P}_{\bar{\delta}}(k;\eta)}{k^4} = \frac{9\Omega_m^2(\eta)H^4(\eta)}{8\pi^2} \frac{P(k;\eta)}{k},$$

- Spectrum peaks at I = 30
 ~ coherent deflection over a few degrees
- RMS of deflection are of ~2.5 arcmin
- Kernel peaks at z~2 => LSS are mostly linear

WHAT CMB LENSING MEASURES

Carron et al 2022

Planck CMB lensing alone measures

 $\sigma_8 \Omega_m^{0.25} = 0.589 \pm 0.020$

 $\theta_{BAO}(0.51)[degrees]$

"Lensing-only" priors $\Omega_{\rm b}h^2 = 0.0222 \pm 0.0005;$ $n_{\rm s} = 0.96 \pm 0.02;$ 0.4 < h < 1

Planck collaboration 2018

LENSING CONSTRAINTS

Planck collaboration 2018

Degeneracy breaking with galaxy lensing surveys: same probe but at lower redshift

Bianchini et al. 2020

THE SUM OF NEUTRINO MASSES

- masses
- Expected 4 sigma detection of massive neutrinos with CMB-S4 + CMB lensing + BAO

CMB lensing is sensitive to the growth of structures, and as such to the sum of neutrino

CMB-S4 Science book 2016

THE TENSOR TO SCALAR RATIO

- Inflation generates primordial gravitational way
- Primordial B modes of polarisation are sourced these GW, but most of the observed B modes a coming from lensing
- Need to remove these lensing B modes (delensing)

CMB-S4 Science book 2016

ADVANCED EUCLID SCHOOL - LES HOUCHES - JUNE 2022

OUTLINE

What is the gravitational lensing of the CMB?

How do we measure it?

Cross correlations with galaxy surveys

Galaxy clusters and CMB lensing

Next generation estimators of CMB lensing

BASIC IDEA OF QUADRATIC ESTIMATION

- Lensing creates statistical anisotropies: patches of the sky will have different spectra
- We can measure these deviations, and estimate the lensing potential field

QUADRATIC ESTIMATOR (QE)

Lensing creates correlations between different multipole moments

$$\left\langle X^{\text{len}}(l)Y^{\text{len}*}(l')\right\rangle_{\text{fixed lensed}} = f_{XY}(l,l')\phi(L)$$
$$\downarrow \neq l', L = l + l'$$

The QE combines scales of two CMB fields (Hu & Okamoto 2002)

$$\hat{\phi}(\boldsymbol{L}) = \frac{1}{R_L^{XY}} \int \frac{d^2 \boldsymbol{l}}{2\pi}$$

Normalisation (response of the estimator)

Lensing induced correlations

$f^{XY}(\boldsymbol{l},\boldsymbol{L})\,\bar{X}(\boldsymbol{l})\,\bar{Y}^*(\boldsymbol{l}-\boldsymbol{L})$

Inverse variance filtered CMB fields

ADVANCED EUCLID SCHOOL - LES HOUCHES - JUNE 2022

PLANCK LENSING MAP

Planck collaboration 2018

0.0016

NOISY RECONSTRUCTION

 $C_L^{\hat{\phi}\hat{\phi}} = C_L^{\phi\phi} + N_L^0 + N_L^1 + \dots$

Chance correlations between different scales can mimic the lensing effect

Disconnected (gaussian) contractions of the lensed CMB fields

The power spectrum of the estimated lensing potential is a 4 point functions of the maps

The signal we want

Non gaussian secondary contractions created by lensing (proportional to $C^{\phi\phi}$)

POWER SPECTRUM BIASES

$$\hat{\phi}(L) = \frac{1}{R_L^{XY}} \int \frac{d^2 l}{2\pi} F^{XY}(l, L - l) X(l) Y^*(l - L)$$

$$<\hat{\phi}^{XY}(L_{1}), \hat{\phi}^{CD}(L_{2}) > = \frac{1}{R_{L_{1}}^{XY}R_{L_{2}}^{CD}} \int_{l_{1},l_{2}} \frac{d^{2}l_{1}}{(2\pi)^{2}} \frac{d^{2}l_{2}}{(2\pi)^{2}} F^{XY}(l_{1},L_{1}-l_{1})F^{CD}(l_{2},L_{2}-l_{2}) < X(l_{1})Y(L_{1}-l_{1})C(l_{2})D(L_{2}-l_{2}) > 0$$

$$<\hat{\phi}^{XY},\hat{\phi}^{CD}>\simeq < XYCD>$$

N0 bias = **all disconnect contractions** of the 4 point function. Considers the lensed CMB fields as independent Gaussian fields. We can use Wick's theorem:

$$\langle \hat{\phi}^{XY}, \hat{\phi}^{CD} \rangle \simeq \langle XYCD \rangle = \langle XY \rangle \langle CD \rangle +$$

$$N_{L}^{(0)XYCD} = = \frac{1}{R_{L_{1}}^{XY}R_{L_{2}}^{CD}} \int_{l_{1}} \frac{d^{2}l_{2}}{(2\pi)^{2}} F^{XY}(l_{1}, L_{1} - l_{1}) \times$$

$$\begin{split} N_{L}^{(0)XYIJ} &= \frac{1}{\mathcal{R}_{L}^{XY}} \frac{1}{\mathcal{R}_{L}^{IJ}} \int \frac{\mathrm{d}^{2}\boldsymbol{l}_{1}}{(2\pi)^{2}} F_{\ell_{1}}^{X} F_{\ell_{2}}^{Y} W^{XY}(\boldsymbol{l}_{1},\boldsymbol{l}_{2}) \\ & \times \left(F_{\ell_{1}}^{I} F_{\ell_{2}}^{J} W^{IJ}(\boldsymbol{l}_{1},\boldsymbol{l}_{2}) C_{\ell_{1}}^{XI} C_{\ell_{2}}^{YJ} \\ & + F_{\ell_{2}}^{I} F_{\ell_{1}}^{J} W^{IJ}(\boldsymbol{l}_{2},\boldsymbol{l}_{1}) C_{\ell_{1}}^{XJ} C_{\ell_{2}}^{YI} \right), \end{split}$$

 $\langle XC \rangle \langle YD \rangle + \langle XD \rangle \langle YC \rangle$

 $\left| F^{CD}(-l_1, l_1 - L_1) C_{l_1}^{XC} C_{L_1 - l_1}^{YD} + F^{CD}(l_1 - L_1, -l_1) C_{l_1}^{XD} C_{L_1 - l_1}^{YC} \right|$

POWER SPECTRUM BIASES

Higher order biases = connected contractions.

The N1 bias is the dominant one, and can be obtained with all contractions at order 1 in $C_I^{\phi\phi}$

 $\langle \hat{\phi}^{XY}, \hat{\phi}^{CD} \rangle \simeq \langle XYCD \rangle \quad X^{\text{len}} \sim X^{\text{unl}} + \nabla \phi \nabla X$

$$<\hat{\phi}^{XY}, \hat{\phi}^{CD} > \simeq < (X + \nabla\phi \nabla X)(Y + \nabla\phi \nabla Y)(C + \nabla\phi \nabla D)(D + \nabla\phi \nabla D) >$$
 ×4

+ all the 4 connected pairs of ϕ will give $C_L^{\phi\phi}$

$$<\hat{\phi}^{XY}, \hat{\phi}^{CD} > \simeq < (X + \nabla\phi \nabla X)(Y + \nabla\phi \nabla Y)(C + \nabla\phi \nabla Y)(X + \nabla\phi \nabla Y)(C + \nabla\phi \nabla Y)(C + \nabla\phi \nabla Y)(C + \nabla\phi \nabla Y)(X + \nabla\phi \nabla Y)$$

+ the combination of XD, YC and the 4 connected pairs of ϕ will give $N_L^{1,XYCD}$

x2 $+ \nabla \phi \nabla D (D + \nabla \phi \nabla D) >$

NOISY RECONSTRUCTION

- Planck lensing power spectrum is dominated by the N0 bias at all scales
- Combining all pairs of maps into a minimum variance estimator
- TT estimator is dominating in Planck

PLANCK LENSING SPECTRUM

- After subtracting N0 bias
- 40 sigma detection of lensing power spectrum
- Black line here is a LCDM fit of TT, TE and EE spectra

Planck collab. 2018

FOREGROUNDS CONTAMINATIONS

- Non gaussian distribution of foregrounds bias the quadratic estimator reconstruction
- Need to clean the maps (at the expense of higher noise)
- For reconstructing CMB lensing we often do not use scales above l=3000 in temperature to reduce biases
- That's also why polarisation is interesting: polarised foreground are mostly large scales so we expect that we can use up to I=5000

Schaan et al 2019

FOREGROUND BIASES

Van Engelen et al 2013

ROBUST ESTIMATORS

Tradoff between bias and uncertainty

Schaan et al 2019

Darwish et al 2021

ADVANCED EUCLID SCHOOL - LES HOUCHES - JUNE 2022

OUTLINE

What is the gravitational lensing of the CMB? How do we measure it?

Cross correlations with galaxy surveys

Galaxy clusters and CMB lensing

Next generation estimators of CMB lensing

WHAT IS THE INTEREST ?

- They probe the same matter distribution
- They have different systematics
- They have different cosmological degeneracies

CROSS POWER SPECTRA

$$C_{\ell}^{\chi y} = c \int \frac{\mathrm{d}z}{H(z)r^2(z)} \mathcal{W}^{\chi}(z) \mathcal{W}^{y}(z) P_{\delta\delta}\left(\frac{\ell+1/2}{r(z)}, z\right)$$

Galaxy clustering kernel: $W^{GCp_i}(z) = b_i(z) \frac{n_i(z)}{\bar{n}_i} \frac{H(z)}{c}$

Galaxy weak lensing kernel: $W^{WL_i}(z) = W^{\gamma_i}(z) - W^{WL_i}(z)$

with

$$\begin{split} \mathcal{W}^{\gamma_i}(z) &= \frac{3}{2} \, \frac{H_0^2}{c^2} \, \Omega_{\mathrm{m},0} \left(1+z \right) r(z) \int_z^\infty \mathrm{d}z' \, \frac{n_i(z')}{\bar{n}_i} \left[1 - \frac{r(z)}{r(z')} \right], \\ \mathcal{W}^{\mathrm{IA}_i}(z) &= \frac{n_i(z)}{\bar{n}_i} \, \frac{H(z)}{c} \, . \end{split}$$

CMB lensing kernel:

$$\mathcal{W}^{\phi}(z) = \frac{3}{2} \frac{H_0^2}{c^2} \Omega_{\mathrm{m},0} \left(1+z\right) r(z) \left[1 - \frac{r(z)}{r(z^*)}\right]$$

$$-\frac{\mathcal{P}_{\mathrm{IA}}\Omega_{\mathrm{m},0}}{D(z)}\mathcal{W}^{\mathrm{IA}_{\mathrm{i}}}(z)\,,$$

EUCLID REDSHIFT DISTRIBUTIONS

 Strong overlap between the CMB lensing and efficiency and the galaxy distribution of Euclid

Euclid Preparation XV: Forecasting cosmological constraints for the *Euclid* and CMB joint analysis

CALIBRATING OF WEAK I FNCING CIIDVEVC

Calibrating magnification bias of LSST with the CMB lensing of CMB-S4

Schaan et al. 2017

EUCLID CROSS CMB LENSING DATA VECTOR

 $\ln L \propto (\hat{C}_{\ell} - C_{\ell}^{\rm th})^{\rm T} \mathrm{Cov}^{-1} (\hat{C}_{\ell} - C_{\ell}^{\rm th})$

 $\vec{\mathcal{O}}_{XC}(\ell) = \{C_{\ell}^{\kappa_{\rm CMB},\kappa_{\rm CMB}}, C_{\ell}^{\kappa_{\rm CMB},{\rm GCph}_{\rm i}}, C_{\ell}^{\kappa_{\rm CMB}}, C_{\ell}$

DES x SPT data vector

$$C_{\mathrm{CMB}}, \mathrm{WL}_{\mathrm{i}}, C_{\ell}^{\mathrm{GCph}_{\mathrm{i}}, \mathrm{GCph}_{\mathrm{j}}}, C_{\ell}^{\mathrm{WL}_{\mathrm{i}}, \mathrm{WL}_{\mathrm{j}}}, C_{\ell}^{\mathrm{WL}_{\mathrm{i}}, \mathrm{GCph}_{\mathrm{j}}}\}$$

	$C_{\ell}^{\kappa_{\mathrm{CMB}},\kappa_{\mathrm{CMB}}}$	$C_\ell^{\kappa_{ m CMB}, { m GCph}_{ m i}}$	$C_\ell^{\kappa_{ m CMB}, { m WL_j}}$	$C_\ell^{\mathrm{GCph_i},\mathrm{GCph_j}}$	$C_\ell^{\mathrm{WL_i},\mathrm{WL_j}}$	$C_\ell^{\mathrm{WL_i,GCph}}$			
$C_{\ell}^{\kappa_{\rm CMB},\kappa_{\rm CMB}}$	Cov(<mark>kk, kk</mark>)	Cov(<mark>kk, k-GC</mark> ,)	Cov(<mark>kk</mark> , k-WL _j)	Cov(<mark>kk</mark> , GC _i -GC _j)	Cov(kk, WL _i -WL _j)	Cov(<mark>kk</mark> , WL _i -G			
$\mathcal{C}^{\kappa_{\mathrm{CMB}},\mathrm{GCph}_{\mathrm{i}}}_{\ell}$		Cov(<mark>k-GC</mark> _j , <mark>k-GC</mark> _j)	Cov(<mark>k-GC</mark> , k-WL _j)	Cov(<mark>k-GC</mark> ,,GC _j -GC _k)	Cov(<mark>k-GC</mark> ,,WL _j -WL _k)	Cov(<mark>k-GC</mark> ,,WL _j -GC			
$C_\ell^{\kappa_{ m CMB}, { m WL_j}}$			Cov(k-WL _i , k-WL _j)	Cov(k-WL _i , GC _i , GC _j)	Cov(k-WL _i , WL _i -WL _j)	Cov(<mark>k-WL</mark> , WL			
$C_\ell^{\mathrm{GCph_i},\mathrm{GCph_j}}$				EUCLID 3	3X2pt COVARIAN	ICE MATRIX			
$C_\ell^{\mathrm{WL_i,WL_j}}$	Cov(A B, A' B') $= rac{\delta}{(2\ell)}$	$ \overset{\mathrm{K}}{\overset{\mathcal{U}'}{\ell'}} = \left[\Delta C^{AA'}_{ik}(\ell) \Delta C^{BB'}_{jl}(\ell') + \right] $	$-\Delta C^{AB'}_{im}(\ell)\Delta C^{BA'}_{jk}(\ell')\Big]$	[N ₁ N ₂ (2N ₂ +1)] X [N ₁ N ₂ (2N ₂ +1)] 4200 X 4200					
$\mathcal{L}_{\ell}^{\mathrm{WL}_{\mathrm{i}},\mathrm{GCph}_{\mathrm{j}}}$	$\Delta C^{AB}_{ij}(\ell) = - {\scriptstyle }$	$\frac{1}{\overline{f_{\rm sky}\Delta\ell}} \left[C_{ij}^{AB}(\ell) + N_{ij}^{AB}(\ell) \right]$							

EUCLID FORECASTS

Pessimistic Euclid + S4, flat Λ CDM -	1.1	1.3	1.1	1.0	1.4			
non-flat Λ CDM -	1.0	1.2	1.1	1.0	1.1			
flat $w_0 w_a CDM$ -	1.2	1.1	1.1	1.2	1.2		1.1	1.2
non-flat $w_0 w_a CDM$ -	1.0	1.0	1.1	1.1	1.0		1.1	1.8
flat $w_0 w_a \gamma CDM$ -	1.0	1.1	1.1	1.1	1.0		1.0	1.1
non-flat $w_0 w_a \gamma \text{CDM}$ -	1.1	1.1	1.1	1.1	1.1		1.0	1.7
	ζ _{νο,} ζ	1 mg	1%÷	'n	6°	ĸ	100	100 100
	Cosmology parameters				E	xte	nsio me	

For a standard LCDM cosmology, adding CMB lensing and cross correlation with Euclid improves constraints on galaxy bias by 30%, and in intrinsic alignment bias by 10%

DES X SPT RESULTS

Abbott et al 2018

DES X SPT RESULTS

Chang et al 2022

ADVANCED EUCLID SCHOOL - LES HOUCHES - JUNE 2022

OUTLINE

What is the gravitational lensing of the CMB? How do we measure it?

Cross correlations with galaxy surveys

Galaxy clusters and CMB lensing

Next generation estimators of CMB lensing

GALAXY CLUSTERS

- Most massive collapsed structure in the universe
- Cluster mass function sensitive to $\sigma_8 \Omega_m$
- Difficult to calibrate the mass (X-Ray, SZ, Galaxy weak lensing)
- the mass of all clusters

CMB lensing being a source at very high redshift it can estimate the weak lensing and thus

However it's still very noisy so can only estimate the mass by stacking groups of clusters

LENSING BY CLUSTERS

On small scales the lensing creates a dipolar patern

MASS RICHNESS RELATION

Stacking CMB lensing map at the position of clusters

Geach and Peacock 2017

FUTURE CMB SURVEYS

- Will be able to calibrate the mass of 100 000 clusters with sub percent uncertainty
- But very sensitive to SZ signal which contaminates the lensing reconstruction
- Polarisation is expected to be much cleaner

Raghunatan et al 2017

ADVANCED EUCLID SCHOOL - LES HOUCHES - JUNE 2022

OUTLINE

What is the gravitational lensing of the CMB? How do we measure it?

Cross correlations with galaxy surveys

Galaxy clusters and CMB lensing

Next generation estimators of CMB lensing

 $O_L^{\kappa\kappa}$

NEXT GENERATION CMB SURVEYS

EB (polarisation) estimator will be dominant for CMB S4

CMB-S4 science book 2016

MORE OPTIMAL ESTIMATORS

Neglecting primordial B modes, one could reconstruct perfectly the lensing field

 $P(\phi | \text{data})$

<=>

- Likelihood based approach, first introduced in Hirata & Seljak 2003 How can we find the maximum of this likelihood ?
 - Sampling-based approach -> Millea et al 2020
 - Iterative approach -> Carron & Lewis 2017

BAYESIAN SAMPLING

 $\mathcal{P}(f,\phi,A_{\phi},A_{f},P_{\text{cal}},\psi_{\text{pol}},\epsilon_{\text{Q}},\epsilon_{\text{U}},\beta_{i} \,|\, d\,)$

- Sampling with a Monte-Carlo algorithm
- 202,800 free parameters for the 100 deg2 SPT-Pol data of 260 pixels of a side
- 17% improvement for SPT-Pol on the uncertainty of lensing amplitude compared to QE

Millea et al 2020

ITERATIVE APPROACH

- Newton-Raphson iterations on the likelihood
- At each step we get an estimate of the maximum a posteriori lensing field, obtained with a QE
- In practice at each step:
 - delens the data using the deflection estimate
 - apply a quadratic estimator on the resulting maps
 - start again until convergence
- Advantage: fast and based on a well known tool, the quadratic estimator

Input phi

QE

MAP

Carron&Lewis 2017

OPTIMAL LENSING POWER SPECTRUM ESTIMATION

Problem: cannot track analytically the 4 point function of the lensing power spectrum How do we debias the spectrum obtained from the iterative lensing reconstruction?

ITERATIVE BIASES

$$C_L^{\hat{\phi}\hat{\phi}} = C_L^{\phi\phi} + N_L^0 + N_L^1$$

Assume N0 and N1 biases are same expression of the QE but with partially delensed CMB spectra, obtained iteratively

Hotinli et al 2021

 $10^7 L^2 (L + 1)^2 C_L^{\phi\phi}/2\pi$

 10^{-10}

LL & Carron 2021

CONCLUSION

- CMB lensing is the deflection of the primary image of the CMB by large scale structure It creates statistical anisotropies, which can be used to reconstruct the lensing field with a
- quadratic estimator
- It is sensitive to $\sigma_8 \Omega_m$, and to the neutrino mass when combined to BAO and primary CMB.
- Cross correlations increase the cosmological constraints and decrease the importance of systematic uncertainties, and is especially useful in extended LCDM models

Let's now jump in the pool with a hands on session

